Lecture :
 Some applications of z-transform

- Quick review of z-transform
- Rational z-transform: poles, zeros, system function
- Time-domain behavior of LT systems. Stability and causality
- Inverse z-transform using partial fraction expansion

Z-transform

- Relation to Laplace transform:

$$
z=e^{s \Delta t}
$$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
x(n) & =\frac{1}{2 \pi j} \oint_{C} X(z) d z
\end{aligned}
$$

- Relation to discrete time Fourier transform: $1 \cdot e^{j \omega}$

Rational Z-transform

- Z-transform used to characterize systems.
- Convolution property:

$$
y(n)=x(n) * h(n) \Rightarrow Y(z)=X(z) H(z)
$$

- $\mathrm{H}(\mathrm{z})$ - system function

Rational z-transform: System function

- LCCDE system: $\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k)$
- Using linearity and time shift properties:

$$
\begin{gathered}
\sum_{k=0}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z) \\
\Downarrow \\
Y(z)=H(z) X(z)
\end{gathered}
$$

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
$$

Poles and zeros

$$
\begin{aligned}
& X(z)=\frac{N(z)}{D(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \\
& X(z)=\frac{b_{0}}{a_{0}} z^{N-M} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{M}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{N}\right)}
\end{aligned}
$$

- The transform has M finite zeros at $z=z_{1}, \ldots z_{M}, N$ infinite poles at $z=p_{1} \ldots z_{N}$ and $|\mathrm{N}-\mathrm{M}|$ zeros (if $\mathrm{N}>\mathrm{M}$) or poles (if $\mathrm{N}<\mathrm{M}$) at the origin $\mathrm{z}=0$.

Pole-zero plots

PAGE 7
Re

Time-domain behavior of systems

Figure 3.3.5 Time-domain behavior of a single-real-pole causal signal as a function of the location of the pole with respect to the unit circle.

Time domain behavior

Inverse Z-tr.: partial fraction expansion

- Distinct poles:

$$
\begin{gathered}
\frac{X(z)}{z}=\frac{A_{1}}{z-p_{1}}+\frac{A_{2}}{z-p_{2}}+\cdots+\frac{A_{N}}{z-p_{N}} \\
A_{k}=\left.\frac{\left(z-p_{k}\right) X(z)}{z}\right|_{z=p_{k}}
\end{gathered}
$$

$$
Z^{-1}\left\{\frac{1}{1-p_{k} z^{-1}}\right\}= \begin{cases}\left(p_{k}\right)^{n} u(n), & \text { if ROC: }|z|>\left|p_{k}\right| \\ -\left(p_{k}\right)^{n} u(-n-1), & \text { if ROC: }|z|<\left|p_{k}\right|\end{cases}
$$

Example with multiple poles

$$
X(z)=\frac{1}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}}=\frac{A_{1}}{z+1}+\frac{A_{2}}{z-1}+\frac{A_{3}}{(z-1)^{2}}
$$

$$
\begin{aligned}
& A_{1}=\left.\frac{(z+1) X(z)}{z}\right|_{z=-1}=\frac{1}{4} \\
& A_{3}=\left.\frac{(z-1)^{2} X(z)}{z}\right|_{z=1}=\frac{1}{2} \\
& A_{2}=\frac{d}{d z}\left[\frac{(z-1)^{2} X(z)}{z}\right]_{z=1}=\frac{3}{4}
\end{aligned}
$$

Stability

- A linear time-invariant system is BIBO stable if and only if the region of convergence of the system function includes the unit circle.
- A causal system is stable if all poles are inside the unit circle

Pole - zero cancellation

- Pole-zero cancellation occurs either in the system function itself, or in the product of the system function with the z-transform of input system.
- This is used to design filters.

Summary

- Z-transform useful in system analysis
- Can be used to determine Fourier transform
- Used to decide if a system is causal and stable
- Used to determine the response of a system
- Used to design filters through pole-zero cancellation.

ASSIGNMENT 2 (SECTION-B)

Q1.Find the Z-T and sketch R.O.C for sequence given below: -

$$
\mathrm{x}[\mathrm{n}]=2^{\mathrm{n}} \mathrm{u}[\mathrm{n}]+3^{\mathrm{n}}[-\mathrm{n}-1]
$$

Q2: Find the z transform and ROC of the signal sequence

$$
x(n)=\left[4(2)^{n}-5(3)^{n}\right] u(n)
$$

Q3: What are the applications of Z transforms

